Evolution in Distributed Heterogeneous Systems

Premkumar Devanbu and Eric Wohlstadter,
Dept. Of Computer Science,
University of California, Davis, CA, 95616
devanbu@cs.ucdavis.edu

October 31, 2001

Abstract

Distributed, heterogeneous systems are becoming very common, as globalized organizations integrate ap-
plications running on different platforms, possibly written in different languages. Component-interoperability
standards such as CORBA are critical enablers of this trend. Certain non-functional requirements for such
features as security, quality of service, flexible administration are specially critical to distributed hetero-
geneous systems. Unfortunately, such requirements are often formulated late, since they depend upon a
particular installation, and/or change rapidly with business and political climate. Distributed, heteroge-
neous systems are particularly difficult to evolve, since the elements are written in different languages, and
the operational environment is heterogenous and distributed. Adding “non-functional” features late in the
game is specially hard; the required modifications are scattered through the implementations of the different
components. Their design and implementation is also obscured by code delocalization, as well as by complex-
ities arising from co-ordination and synchronization considerations. We would like to address this problem
with solutions that are animated by practical software engineering goals: type safety of scattered changes,
and their interactions; explicit design models, with tracability to code; inter-operability with legacy compo-
nents and binary COTS components; and opportunistic optimization, leveraging any available optimizations
existing in the compilers that are in use.



1 Background

Many software applications are both distributed and heterogeneous. Distribution arises from business and hu-
man imperatives (such as globalization) and has been facilitated by the rise of reliable, high-speed networks,
and by standards-based middleware such as CORBA [11]. Modern systems are also heterogeneous: they com-
prise sub-systems built on many different platforms. Heterogeneity arises for a variety of reasons: physical
constraints (weight, cost, battery capacity, size), market conditions (e.g., certain components available only on
certain platforms) available technical skills (Java, C++, Perl, etc), and history (legacy systems). Distributed
heterogeneous (DH) systems are now very common, and are likely to endure.

Like all software systems, DH systems often come under pressure to evolve during their life-times, as re-
quirements change. Unfortunately, DH systems are inherently hard to evolve, for a variety of reasons: they
employ different languages and hardware/software platforms; installation procedures may be quite complex;
synchronization, concurrency, and failures present difficult programming challenges; and source code may not
be available.

Of special interest here are non-functional requirements, such as security (including access control), quality-
of-service, monitoring (for intrusion detection), and administrative features. Such requirements can often only
be finalized quite late, perhaps even after deployment; they give rise to late evolutionary pressure on software
systems. Unfortunately, these requirements changes can rarely be addressed by isolated changes to a few closely
related modules. Experience amply indicates [1,3,4] that the implementation of features such as security are
scattered through a variety of different modules. Features that require this type of de-localized implementation
are called “cross-cutting concerns” in the literature. This phenomenon makes non-functional features specially
difficult to add or evolve, even in non-distributed systems implemented in a single language. The problem
become much worse for DH systems.

In this research, we propose to support the evolution of DH systems by enhancing middleware. Our re-
search is animated by several software engineering principles, such as: type safety; the need to evolve COTS
and legacy components available only in binary form; inter-operability of changes and components written in
different languages; and the opportunity to leverage any optimizations available in the compilers. Our scope
encompasses changes to interface definition languages to support architecture-level modeling of cross-cutting
concerns, enhancements to the IDL compilers to provide additional type-checking for the implementations of
cross-cutting concerns, changes to run-time environment, and finally, changes to configuration management to
support static and dynamic integration of cross-cutting implementation.

2 An Example

Consider a DH medical application (figure 1), with a set of clients making use of three groups of servers (shown
as groups of circles): clinics, pharmacies, and insurers. The servers in a group could be running on different
platforms (doctor’s offices might use different types of computers), but each provides the same function (e.g.,
same CORBA IDL interface). In Figure 2 (A), the original service is shown. The components in this architecture
communicate using DH middleware. We now desire to add security into this system, implementing a policy
that has two critical elements

1. Each client must be authenticated by an authentication server (perhaps by a password scheme, or a
public-key scheme; the details are not critical).

2. Each client must deal with exactly one server from each category. Thus, each client must deal with just
one doctor, one pharmacy, and one insurer. This could be useful to discourage some types of fraud, drug
abuse, etc.

Since our central goal is to facilitate this type of modification, we consider in detail the implementation changes
required. Figure 2 (B) schematically indicates the high-level architectural modifications that might be required.
A new authentication server has been added, to validate users. Each group of servers also has a security “wall”
surrounding it, which provides the access control. At a a lower level, this modification requires changes to every
component, and also to the interactions between components. The client now has to authenticate itself to the
authentication server, which presumably provides some of identity token. This token must now added to all
client-service requests. All members of each group of services must now co-ordinate among themselves to make



(A) (B)

Figure 1: The figure (A) on the left represents a D'H system comprising several clients using services shown in 3 groups.
Figure (B), is the same system, with security added. Clients use an authentication server to identify themselves to
servers, who now have access control figuratively surrounding them. We consider a security policy where clients can
access only one server in each group. This might prevent, for example, a patient getting multiple prescriptions of a
controlled drug from several different doctors. The implementation of such a security feature transcends the existing
component boundaries of the system on the left.

sure that a client with a particular identity does not interact with more than one specific member of a group.
Since malicious clients may try to induce race conditions by simultaneously contacting several members of a
group, group members need to synchronize with each other before they “commit” to serving a client.

Making this type of change to the different elements presents several challenges. The changes are clearly
“cross-cutting”, and scattered; understanding these distributed changes as a whole is a conceptual challenge.
Programs may be based on different platforms, possibly written in different languages. In some cases, source
code for some elements may not be available. Thus, it may not be feasible to change the interface of existing
components. Changes may have to be “loosely coupled” in the form of wrappers or proxies. Changes might
have to be made by different organizations. However, the changes must be made in a consistent way, to ensure
correct interaction. Changes must be all deployed in the different elements. For comprehensibility, and to
support further evolution, the impact of the changes should be clearly modeled and traceable all the way from
architecture to implementation. Finally, changes should be composable, and there should be clear support for
explicitly dealing with feature interactions.

Our goal address these challenges, and support the evolution of DH systems. Specifically, we propose to
advance the state of middleware (including IDLs, IDL compilers, and run-time environments). Our designs are
animated by the following goals:

Safety Modifications to different components should be co-ordinated; in particular, information exchange be-
tween modifications should provide all the type safety guarantees available to components using the
middleware (e.g., with CORBA IDL).

Inter-operability Some component modifications can be made in a language different from the component
implementation language; some modifications can also be applied to COTS components available only in
binary form.

Opportunism However, if source code is available, modifications should be amenable to optimizations sup-
ported by the available compilers.

Modeling & Traceability There should be a high-level architectural model (e.g., CORBA IDL or MCA or
equivalent) of the scattered, cross-cutting implementation changes; this high-level design model should be
traceable to the code modification.

Composability Modifications should be composable, and there should be support for composition in the
infra-structure. There should be explicit ways of dealing with feature interactions [12].



We have developed practical designs that address some of these goals. We hope to develop these designs
further, implement them, and evaluate them.

3 Related Work

The challenges of evolving large systems to adapting to changing non-functional requirements has been recog-
nized by many researchers, and various approaches have been proposed.

Language-specific mechanisms have been in the vanguard. Aspect-oriented programming, or AOP, (see a
recent issue of CACM [1]) introduces language design principles that have produced enhancements to Java [6]
and also to C [4]. AOP supports evolution via cross-cuts, which are sets of events (method calls, exception raises,
etc) that are to be intercepted, and advice that is to be executed when these events are activated. The insertion of
advice is accomplished through static code transformation (evocatively called “weaving”). Cross-cuts and advice
are integrated into a static scoping device called an ”aspect” that allows AOP programmers to conceptualize
and integrate otherwise scattered changes to a system. Both the advice and the cross-cuts are language-specific
mechanisms. A different mechanism, with strong roots in the concept of monads [15] from abstract algebra has
been used as a way of dealing with software evolution in lazy functional languages. Monads basically provide a
way for programmers to “over-ride” fundamental mechanisms of expression evaluation and value propagation,
and thus change the behavior of a program written in monadic style; changes are encapsulated into the context
of the operations on a monad. While monadic evolution doesn’t allow nearly as much flexibility in selecting
groups of program execution events as parts of cross-cuts, the mathematical foundations of monads allow for
more compositionality (through combinators and explicit “lifting” [12] to handle feature-interaction), generality
(though higher-order programming), and static checking (through built-in, powerful higher-order type systems).
Our goal, however, is to seek language-independent mechanisms that allow adaptations in DH systems built out
of components in different languages, and/or COTS components only available in binary form. Moreover, non-
functional adaptations in DH systems are likely to cross process boundaries; we need mechanisms to support the
propagation of typing environments across the boundaries to allow static typing mechanisms different compilers
to work together to ensure that the adaptations, taken together, are type-safe.

Research in Component-based technologies, and industry, have also produced adaptation mechanisms. Wrap-
pers are established means of adapting legacy systems for inter-operability [17], and also of adding security
features to individual components [5, 14]. While wrappers work on the implementation side, smart proxies [16]
work on the client side. While individual components can be adapted by wrappers or smart proxies, these
mechanisms do not easily support evolutionary changes to a DH that involve co-ordinated modifications to
several separate components. QUO [9] allows co-ordinated modifications to all elements of a DH. QUO is
mainly intended to address quality of service issues, and is based on a domain-specific language. Other mech-
anisms involve modifying the middleware infra-structure. Approaches include interceptors [10, 16], filters [13],
and specially constructed ORBs [7]. Some use language-specific reflection mechanisms [8]. With these, one
can add instrumentation to all invocations arriving at an ORB to perform such generic actions as logging.
They also use reflective techniques that treat invocations as objects and analyze them. We seek mechanisms
that can be more closely tailored to specific components; in addition, we would like to allow mechanisms that
allow static type checking, using existing compilers. Thus, we would prefer to avoid reflection to communicate
between adaptations. While reflection is sometimes very useful, we believe that the evolution of DH systems
often demands a more rigorous static typing infra-structure to ensure agreement between the different adapta-
tions (which may not always be written by the same people). Component containers are another approach to
evolvable systems, but so far these approaches, just those with Enterprise Java Beans (EJB) and Aspect EJB [2]
are also language-specific, and rely heavily upon reflection.

In conclusion, we believe that the goals of our research programme as outlined at the end of the previous
section, and illustrated in the example, are novel, and worthy of pursuit. We briefly describe in the section our
approach to this problem.

4 Approach

One manifestation of our approach is shown in figure 2. We show an existing pair of darkly shaded components,
which used to communicate over an interface that was devoid of security-related parameters. These communicate



AM1 ES

Old Interf Interf
nge;;e%&;>n erface Eomp”;r/
Smart proLyA S?nart skeleton AM2 5 iij\@

Figure 2: On the left (A) we show a realization of an adaptation mechanism. The two darker elements communicate
over an interface that doesn’t include security information. An adaptation introduces a lightly shaded smart proxy and a
smart skeleton, which communicate over a new interface, which forms the common typing environment. These elements
communicate with the existing, darkly shaded elements. On the right (B), we show the tool infra structure. The old
architectural model (AM1) is annotated with an evolution specification (ES). A compiler processes these two together
to produce a new architectural specification, as well as the boiler plate for the smart skeleton and proxy, which are
implemented by programmers, possibly in different languages.

now through a newly introduced pair of lightly shaded components, whose communication interface is enhanced
with security parameters. These are referred to as "smart proxy” and ”smart skeleton”, by analogy with the
CORBA OMG architecture. The “fitted” shapes of the interface are meant to be evocative of type safety, unlike,
for example, approaches based on reflection. On the right hand side, we show the compilation infra-structure.

We assume that there is an existing architectural model (AM1) (e.g., IDLs, OMG’s architectural models, or
another ADL specification). Our approach calls for an evolution specification (ES) to be written, which describes
which components are to be modified, and/or which architectural interactions are to be intercepted. The design
of the evolution specification language will draw from both aspect-oriented programming languages [4, 6], as well
as the “lifters” of Prehofer [12], which are based on monad composition. This ES, along with the existing AM1
is processed by a compiler to produce a new architectural specification AM2, along with boiler plates for the
smart proxies and smart skeletons, which must be implemented by the programmers; the boiler-plate provides
the typing environment. If there are “lifters” specified in the evolution specification, the programmer is given
boiler plates for the lifters which must be implemented. This provides explicit handling of feature-interactions
and composition.

There is considerable flexibility and opportunism in how these smart proxies and skeletons can be imple-
mented. If the existing dark components are written in different languages, or perhaps if they are available only
in binary then, the smart-proxy and smart-skeleton elements behave in a manner similar to the existing stubs
and skeletons in the middleware—this allows additional functionality to be interposed at some performance cost,
but without requiring any changes to legacy components. We build upon the interceptors and smart proxies
of [16], but without relying upon reflection on the server side.

In addition, this approach provides another advantage. If the source code for the legacy components is
available, and the language that is in use supports evolution (through monads, aspects, continuations or other
means), then the compiler shown in figure 2 B will generate boilerplate that simplifies the task of writing these
adaptations. In this case, any optimization benefits available from the language infrastructures will not be lost.

5 Conclusion

We have illustrated the difficulties of evolving D'H systems with an example, and proposed a multi-tiered, eclectic
approach to solving this problem. Our research is animated by some important software engineering goals: type
safety, language interoperability, opportunistic use of optimization, modeling and traceability to implementation.



The use “lifting” at the architectural level, and a compiler which generates boiler plate for lifters, provides
support for compositionality.

References

[1]
2]

3]

Communications of the ACM, Special Issue on Aspect-Oriented Programming, October 2001.

Jung Pil Choi. Aspect-Oriented Programming with Enterprise Javabeans. In Proceedings of the Fourth
International Enterprise Distributed Object Computing Conference (EDOC’00), 2000.

Yvonne Coady, Alex Brodsky, Dima Brodsky, Jody Pomkoski, Stephan Gudmundson, Joon Suan Ong, and
Gregor Kiczales. Can AOP support extensibility in client-server architectures? In Proceedings, ECOOP
Aspect-Oriented Programming Workshop, 2001.

Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Using aspectc to improve the modularity
of path-specific customization in operating system code. In ACM SIGSOFT FSE, 2001.

Tancmothy Fraser, Lee Badger, and Mark Feldman. Hardening COTS software with generic software
wrappers. In IEEE Symposium on Security and Privacy, 1999.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An overview of aspectj, 2001.

Fabio Kon, Manuel Roméan, Ping Liu, Jina Mao, Tomonori Yamane, Luiz Claudio Magalhaes, and Roy H.
Campbell. Monitoring, Security, and Dynamic Configuration with the dynamicTAO Reflective ORB. In
Proceedings of the IFIP/ACM International Conference on Distributed Systems Platforms and Open Dis-
tributed Processing (Middleware’2000), number 1795 in LNCS, pages 121-143, New York, April 2000.
Springer-Verlag.

T. Ledoux. OpenCorba: A reflective open broker. Lecture Notes in Computer Science, 1616, 1999.

J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr, R. Vanegas, and K. Anderson. Quo aspect lan-
guages and their runtime integration. In Proceedings of the Fourth Workshop on Languages, Compilers and
Runtime Systems for Scalable Components, 1998.

Priya Narasimhan, Louise E. Moser, and P. M. Melliar-Smith. Using interceptors to enhance CORBA.
Computer, 32(7):62-68, 1999.

OMG. The common object request broker architecture (CORBA) http://www.omg.org/, 1995.

Christian Prehofer. Feature-oriented programming: A fresh look at objects. In Mehmet Aksit and Satoshi
Matsuoka, editors, ECOOP’97— Object-Oriented Programming, 11th European Conference, volume 1241,
pages 419443, Jyvaskyld, Finland, 9-13 1997. Springer.

Jon Siegel. CORBA 38 Fundamentals and Programming. Wiley Press, 2000.

T. S. Souder and S. Mancoridis. A tool for securely integrating legacy systems into a distributed environ-
ment. In Working Conference on Reverse Engineering (WCRE), Atlanta, GA, October 1999.

P. Wadler. The Essence of Functional Programming. In Symposium on principles of Programming Lan-
guages, 1992.

N. Wang, K. Parameswaran, and D. Schmidt. The design and performance of meta-programming mecha-
nisms for object request broker middleware, 2000.

Eric Wohlstadter, Stoney Jackson, and Premkumar Devanbu. Generating Wrappers for command-line
legacy systems—the Cal Aggie Wrap O’Matic Project. In International Conference on Software Engineer-
ing, May 2001.



